
1. Introduction

Calculations pertaining to the diffraction of light by
an aperture are typically based on geometric assump-
tions as illustrated in Fig. 1. A plane screen Q contain-
ing an aperture A of width 2w is illuminated by a

quasi-monochromatic source S of width 2s and
circular wave number k = 2π / λ, P0 is a source point,
Q is a point inside the aperture, and P is the point at
which diffraction is observed. A point inside the
aperture (usually the center) is chosen as the origin O,
and cartesian or polar coordinates are used so that
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This paper focuses on unresolved or
poorly documented issues pertaining to
Fresnel’s scalar diffraction theory and its
modifications. In Sec. 2 it is pointed out
that all thermal sources used in practice
are finite in size and errors can result from
insufficient coherence of the optical field.
A quarter-wave criterion is applied to
show how such errors can be avoided by
placing the source at a large distance from
the aperture plane, and it is found that in
many cases it may be necessary to use
collimated light as on the source side
of a Fraunhofer experiment. If these
precautions are not taken the theory of
partial coherence may have to be used for
the computations.

In Sec. 3 it is recalled that for near-zone
computations the Kirchhoff or Rayleigh-
Sommerfeld integrals are applicable, but
fail to correctly describe the energy flux
across the aperture plane because they are
not continuously differentiable with
respect to the assumed geometrical field
on the source side. This is remedied by
formulating an improved theory in which
the field on either side of a semi-reflecting
screen is expressed as the superposition
of mutually incoherent components
which propagate in the opposite directions
of the incident and reflected light.
These components are defined as linear
combinations of the Rayleigh-Sommerfeld
integrals, so that they are rigorous
solutions of the wave equation as well as
continuously differentiable in the aperture
plane. Algorithms for using the new theory
for computing the diffraction patterns of
circular apertures and slits at arbitrary

distances z from either side of the aperture
(down to z = ± 0.0003 λ ) are presented,
and numerical examples of the results are
given. These results show that the
incident geometrical field is modulated by
diffraction before it reaches the aperture
plane while the reflected field is spilled
into the dark space. At distances from the
aperture which are large compared to the
wavelength λ these field expressions are
reduced to the usual ones specified by
Fresnel’s theory. In the specific case of a
diffracting half plane the numerical results
obtained were practically the same as
those given by Sommerfeld’s rigorous
theory.

The modified theory developed in this
paper is based on the explicit assumption
that the scalar theory of light cannot
explain plolarization effects. This premise
is justified in Sec. 4, where it is shown
that previous attempts to do so have
produced dubious results.
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The first mathematical theory of diffraction was
derived in Fresnel’s 1819 Memoir on the Diffraction
of Light [1] from a surprisingly minimal set of assump-
tions:

Monochromatic light is a harmonic wave motion that 
can be described in terms of a scalar wave function,
U(P)exp(– iω t), where |U(P)|2 is the irradiance at P,
ω = 1/kc, is the circular frequency k = 2π /λ , is the
circular wave number and c is the speed of light.

The summation of Huygens’ wavelets is best carried
out on a wave front that coincides with the aperture;
otherwise the computations will be too complicated.

A plane aperture is assumed, which implies that the
source must be distant as well as paraxial (r0 > 2w 2 /λ,
cos θ0 ~ 0),1 so that the incident wave front can, with-
in acceptable tolerances, be assumed to lie inside the
aperture.

The field on the source side of the screen is not
affected by the presence of the screen (St. Venant’s
hypothesis).2 For an infinitesimally small source
with radiant intensity I which is located at the point
P0 in Fig. 1, this leads to U(Q) = √I–exp (ikP0Q) / P0Q.

The Huygens’ wavelets originating at Q are
anisotropic spherical waves that oscillate a quarter
period ahead of the incident field and whose ampli-
tudes are scaled by the factor 1/λ . As the correspon-
ding effect at the point of observation P is attri-
butable to the central Fresnel zone at Q acting alone,
there is no need to know the nature of this aniso-
tropy and hence it follows that dU (P) = (i/λ )U(Q)
exp (ikQP) /QP .

On account of the denominator λ QP in the last
expression it is necessary to assume that QP is a large
distance (r >> λ ), and that P must also be paraxial
(cosθ ≈ 1) as the direction of observation cannot be
substantially different from the direction of inci-
dence.

Combining these expression, Fresnel found

where Egeom = I /r0
2 is the incident geometrical irradi-

ance of the aperture plane and Δ(Q) is the path differ-
ence (P 0Q + QP) – (r 0 + r).

Although a relic of the early 19th century, the Fresnel
diffraction integral (2) is still used today in its original
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Fig. 1. Geometry pertaining to Fresnel’s diffraction integral.

1 This inequality for r 0 follows from Eq. (4a) for s = 0.
2 Jean Claude Saint-Venant (1797-1866) taught mathematics at the
École des Ponts et Chaussées in Paris, where Fresnel studied engi-
neering between 1806 and 1809.
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form and has remained a most useful, reliable tool for
diffraction calculations that have consistently yielded
results which agree with experience and are well docu-
mented [2]. Accordingly, it is commonly regarded as a
cornerstone of diffraction theory and its validity for mid-
field applications remains unchallenged. On the other
hand, the classical theory of optical diffraction is limited
in scope as well as physical significance by several
issues which are still unresolved, misunderstood, or
poorly documented. For example:

The assumption of an infinitesimally small isotropic
point source is seldom justified. All thermal sources
are finite in size, so that errors may arise from an
insufficient coherence of the optical field. As shown in
Sec. 2, below, this can be avoided by invoking the
theory of partial coherence, or by negating the error in
the first place by designing a diffraction experiment so
that the aperture illumination is “almost” coherent.

As Fresnel’s integral is not applicable for computa-
tions in the near zone, it would seem that in this
case the more accurate Rayleigh-Sommerfeld or
Kirchhoff boundary-value integrals [Eqs. (5a-c),
below] can be used with confidence. This is, however,
not the case as these integrals do not correctly describe
the field in the proximity of the aperture screen. In
Sec. 3, this problem is solved by constructing an
improved theory in which St. Venant’s hypothesis is
abandoned and the field on both sides of the screen is
expressed in terms of linear combinations of the
Rayleigh-Sommerfeld integrals.

The standard solutions of the Fresnel diffraction inte-
gral (2) for circular apertures and apertures bounded
by straight edges are models of mathematical ele-
gance, but notoriously difficult to evaluate in practice.
The numerical methods used in this paper not as ele-
gant, but easier to use. As they are rigorously
correct, they can be used at arbitrary distances from
the screen, and this is recommended.

Initially, Fresnel believed that light is akin to longitu-
dinal sound waves but prior to the completion of his
theory he discovered, in collaboration with Arago,3
that it is a transverse wave. He pondered the obvious
question how this discovery affected the theory of 
diffraction and concluded that “the arguments and

computations contained in the Memoir harmonize quite
as well with this new hypothesis as with the preceding,
because they are independent of the actual directions of
the vibrations.” In other words, the scalar approach
makes it impossible to describe the diffraction of
polarized light. This is confirmed in Sec. 4, below.

2. Coherence Issues

Extended thermal sources employed in diffraction
experiments are used either by themselves or followed
by a limiting aperture. In either case, the diffraction pat-
tern due to the principal aperture A can be evaluated
using a generalized Fresnel integral derived by this
author from the general equations for the propagation of
cross-spectral density in a partially coherent optical field
[3]. The case of an incoherent source used by itself is a
straightforward generalization of Eq. (2) and leads to the
following expression for the irradiance at the point P in
Fig. 1,

where L (P0) is the source radiance. In the case of a
thermal source followed by an aperture located in the
plane S , it is necessary to use the van Cittert-Zernike
theorem to calculate the cross-spectral density W(P0, P0,ω)
on S and then find E(P) from the expression

(3b)

where P0 and P ′0 are two points on S, Q and Q' are
points in A, and ω is the circular frequency of the light.
These equations were applied in Ref. [4] to the specific
case of concentric circular apertures and yielded compli-
cated but closed solutions in terms of Lommel functions.

The use of Eqs. (3a) and (3b) for practical computa-
tions is a very tedious task. Therefore, it may be desir-
able to avoid the need for these computations in the first
place by designing diffraction experiments so that the
aperture illumination will be “almost” coherent and the
Fresnel integral (2) can still be used, in spite of the finite
size of a given source. This can be done as follows,
assuming the worst case of a totally incoherent source as
implied by Eq. (3a), considering a concentric arrange-
ment of source and aperture as in Fig. 1, and then
applying the quarter-wave criterion so that the
path lengths P0 Q do not vary by more than λ /4.
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3 At the time of this collaboration with Fresnel, Francois Jean
Dominique Arago (1786-1853) was Secretary of the Paris
Observatory. For a brief time in the Spring of 1848 he served as the
Head of the Second French Republic.



According to Fig. 1, the extreme values of P0Q are

desired criterion is (s + w)2 /r0 ≤ λ / 2 or

(4a)

As shown in Table 1, the corresponding minimum
distances r0,min vary significantly with the sizes of
source and aperture, ranging from a few millimeters for
small sources and apertures to hundreds of meters for
large ones. In the latter case Eq. (4a) can only be
satisfied by placing the source in the focal plane of a
collimator lens, as on the source side of a Fraunhofer
diffraction experiment.4

The coherence criterion (4a) assures a coherent and
uniform aperture field so that the path lengths
( P0Q + QP) are all effectively equal to (r0 + QP), as if
the incident field is a plane wave propagating in the

Under these conditions Eq. (3a) is reduced to a product
of independent integrals over source and aperture,

is equal to the geometrical irradiance of the aperture
plane if Lambert’s law is assumed. That is,

(4b)

which is the squared modulus of Eq. (2) for P0Q = r0.

3. Rigorous Theory
3.1 Background

Fresnel was aware that the spherical wavelets
assumed in his derivation of Eq. (2) cannot be iso-
tropic, because otherwise light would also travel back
toward the source. To avoid this contradiction, so-called
inclination factors can be introduced to assure that the
amplitudes of the wavelets are zero in the reverse direc-
tion. As mentioned earlier, Fresnel did not know the form
of these factors and simply omitted them, assuming
correctly that they are not needed in a paraxial theory.

The question of inclination factors was answered by
the publication of Helmholtz’ theorem in 1859 [5].5
Whereas Fresnel had only stipulated that the screen Q
in Fig. 1 must be large enough to prevent the leakage of
light around its edges, Helmholtz imagined it to be an
infinitely large, closed surface which does not contain
the primary source, and then invoked Green’s formula to
express the diffracted field U(P) as a surface integral of
the form prescribed by Fresnel’s first assumption. This
provided the missing inclination factors in the form of
the normal derivatives ∂U(Q) /∂n, which vanish when the
light propagates in the direction tangential to the screen.
In short, Helmholtz’ theorem states that the diffracted
field is confined to the inside of the surface S but null
on the outside, and thus it merges Huygens’principle and
St. Venant’s hypothesis into one.

The principal solutions of Helmholtz’ theorem are
the familiar Rayleigh-Sommerfeld and Kirchhoff
diffraction integrals [6,7,8],

(5a)

(5b)

(5c)

where the right-most expressions in (5a,b) were
obtained by assuming that the coherence criterion (4a)
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4 Equation (4a) is more stringent than a well-known coherence
criterion attributed to Verdet (1869) which specifies different mini-
mum distances, r0,min = 8sw /λ . These are also quite large for large
apertures and sources.

2w / 2s 0.01 mm 0.1 mm 1 mm 10 mm
0.1 mm 6 mm 20 mm 605 mm 50.1 m
1 mm 510 mm 605 mm 2 m 60.5 m
10 mm 50 m 51 m 60.5 m 200 m

Table 1. Smallest permissible source-aperture distance r0,min defined
by Eq. (3a) for selected aperture sizes 2w (left column) and source
sizes 2s (top row), λ = 1 μm
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for Ugeom (Q). It is well known and easy to show that in
the mid zone these expressions are all reduced to the
Fresnel integral (2) so that

(5d)

It is equally well known that the Rayleigh-Sommerfeld
integrals reproduce the boundary values assumed in
their derivation,

(5e)

tions defined by Eqs. (5a-c) are different from one
another in the near zone and not continuously differen-
tiable in the aperture, so that none expresses the
diffracted field as an analytical continuation of the
assumed geometrical field on the source side.

In order to overcome this failure of the classical
boundary-value theories to describe a smooth flow of
energy across the aperture plane, so-called “rigorous”
theories have been formulated in which St. Venant’s
hypothesis is abandoned and it is assumed that the
incident geometrical is modified by diffraction before it
reaches the screen. Hence, its values on the source side
can be determined by postulating that the overall field
is continuously differentiable inside the aperture. The
most important, and by far most successful treatment of
this type is Sommerfeld’s rigorous theory of diffraction
by a half plane [7, 9], which is expressed in closed form
and involves no approximations of any sort. Other
examples are the Rayleigh-Bouwkamp [6, 10] and
Levine-Schwinger [11] theories, which were intended
to define the transmission coefficients of very small
apertures but are approximations based on assumed
aperture field distributions expressed as a series of
algebraic functions. Undoubtedly, the rigorous treat-
ment of diffraction problems is more powerful than the
boundary-value approach but unfortunately some of the
most common problems, such as diffraction by circular
apertures or slits of arbitrary sizes, have so far not been
solved rigorously.

The reasons for this deficiency of the prior literature
were analyzed in a recent study [12] which included a

numerical comparison of the respective half-plane
results obtained from the Sommerfeld and Rayleigh-
Sommerfeld theories. The theory derived in the follow-
ing subsection is based on the findings of this study,
and it is important that it involves concepts not found in
other theories:

The frequently encountered association of the
Rayleigh-Sommerfeld integrals with parallel or per-
pendicularly polarized light is abandoned and noth-
ing is assumed about them, except that they are in-
dependent solutions of the wave equation which
satisfy the respective boundary conditions specified
in Eq. (5e), above.

Similarly, the customary distinction between “black”
and “metallic” screens is abandoned. The physical
nature of the screen is not specified, except that it has
a certain reflectance | ρ |2 which can be used as a
scale factor to describe different types of screens.

In the general case of a partially reflecting screen
there will be two mutually incoherent diffraction
patterns, one in the forward direction of the incident
light and the other in the reverse direction of the
reflected light. The latter is usually not observable,
but must be taken into account because its presence
affects the radiant flux transmitted in the forward
direction.

3.2 Derivations

Consider the diffraction of light by a plane aper-
ture A in an infinite, infinitesimally thin screen Q
which is illuminated by a source S , as shown in Fig. 1.
Assume that Q is a specular reflector with amplitude
reflectance ρ and that the coherence condition (4a) is
satisfied, so that the incident geometric field and its
reflection can be expressed in the form of plane waves,

Under these conditions, the diffracted field will like-
wise be composed of mutually incoherent components
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(6a)

where u ± (P) and û ± (P) are initially unknown field
components which are attributed to diffraction effects.

As these unknown quantities must have certain
prerequisite properties such as obeying the wave equa-
tion as well as the infinity and edge conditions [7, 13],
and because the Rayleigh-Sommerfeld integrals (5a, b)
have these properties, u ± (P) and û ± (P) can be defined
as linear combinations of the form

(6b)

The coefficients a, b and â, b̂ in (6b) can now be
determined by postulating that the forward field is
equal to Fresnel’s integral u F (P) in the positive mid
zone and equal to the incident geometrical field in
the negative mid zone. The respective values for the
reverse field are assumed to be zero and U F (P̂). That is,

(6c)

(6d)

where Eq. (5d) was used to let
is large.

Equations (6c,d) are satisfied if
so that

(6e)

where

(6f)

It remains to show that these expressions are contin-
uously differentiable inside the aperture. In the case of
u (P), this will be the case if

(6g)

(6h)

which according to Eq. (5e) is true. This argument can
be repeated to prove that, likewise, û(P) is continuous-
ly differentiable when P = Q.

Equations (6e) represent the main result of this
Section. The corresponding forward and reverse irradi-
ances of the field are

(6i)

(6j)

Like u(P) and û(P) themselves, these expressions are
continuously differentiable inside the aperture and thus
imply a smooth, bidirectional flow of energy from one
side to the other. It should be noted that, in these
expressions, the roles of Kirchhoff’s integral uK (P) and
its counterpart ûK (P) are reversed on opposite sides
of the screen, so that they counterbalance each other
and the discontinuities of the Rayleigh-Sommerfeld

The general properties of the diffracted field defined
by these quantities can be inferred from the above-
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mentioned fact that the differences between the
Rayleigh-Sommerfeld integrals are pronounced only in
the immediate proximity of the screen and vanish in the
mid zone. Thus the forward component ûK ( P̂) in the
lower Eq. (6i) disappears as the Fresnel limit is
approached, and the reverse component ûK (P) in the
upper equation (6j) is an evanescent wave which also
vanishes in the Fresnel limit. For |z | >>λ, the forward
field is the same as in Fresnel’s theory and the reverse
field is a mirror image of the forward Fresnel pattern.

3.3 Implementation
3.3.1 General

The formulae of the preceding section are unsuited
for numerical computations unless they can be reduced
to single integrals that can be evaluated without simpli-
fying assumptions which might degrade their accuracy.
Fortunately, the rare instances in which this can be done
include two cases of great practical importance: circu-
lar apertures and apertures bounded by straight edges
when illuminated by normally incident light. The single
integrals obtained in these two cases can readily be
evaluated by numerical methods based on the algo-
rithms described in Sects. 3.3.2 and 3.3.3, below. The
use of these algorithms on a personal computer with
standard spreadsheet software is straightforward and
yields numerical results that were found to be every-
where finite except at distances |z | <0.01λ from the
aperture plane.

The same algorithms can also used at distances
z >>λ , and this is recommended because the standard
analytical solutions of Fresnel’s integral (2) are notori-
ously difficult to use on a personal computer. For exam-
ple, the algorithm defined by Eqs. (8a-c), below, is less
tedious than implementing Lommel’s analytical solu-
tion of the Fresnel diffraction pattern of circular
apertures in terms of infinite series of Bessel functions
[2]. Likewise, the use of Eqs. (11a,b) is easier than the
computation of complex Fresnel integrals by Taylor
series and polynomial approximations [14]. The
algorithms (8a-c) and (11a,b) have the added advantage
of being rigorously accurate, and it should also be
noted that in most cases it is not necessary to compute
the reverse field. On the other hand, the methods
described in this paper can only be used for normally
incident light. It should also be mentioned that, owing
to the highly structured nature of the diffraction
patterns, the use of any of these methods can be cum-
bersome when wide apertures are considered.

3.3.2 Circular Apertures
3.3.2.1 Algorithms

Let ABCB'A' be the rim of a circular aperture of
radius w which is illuminated by normally incident
coherent light and is centered on the coordinate origin,
as shown in Fig. 2. As the corresponding diffraction
pattern must be rotationally symmetrical about the
z-axis it will be sufficient to consider its variation in the
xz-plane, and thus the point of observation is chosen as
P = (x, 0, z). The integrals (5a,b) may then be reduced
to single integrals by defining the area elements dQ
so that they are all concentric with the projection
Q0 = (x, 0, 0) of P onto the aperture plane and coincide
with the circles QBQ ξ B' shown in the figure, where
Q ξ = (ξ, 0, 0) is the right-most point at which these
circles intersect the x-axis. Under these conditions the
phases kQP will be constant and equal to

(7a)

everywhere on these area elements and the integration
can be carried out over ξ – x alone. As also indicated in
the figure, these area elements are in general not fully
contained in the aperture and must therefore be evalu-
ated as

(7b)

where 2χ is the angle subtended by the obstructed arc
BQ ξ B' and is given by

(7c)

or η = 0 or π, as appropriate, when the right-hand side
of (7c) exceeds ± 1. Hence one finds, using Eqs. (5a,b)
and (7a,b),

(7d)
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(7e)

so that the integrals defined in Eq. (6e) are now given by

(7f)

(7g)

The limits of these integrals are v = 0 to k (w + x)
when x ≤ w, and v = k (x – w) to k (x + w) when x ≥ w.
In the first of these ranges it is assumed that χ ≡ 0 when
v ≤ k (x – w).

In order to evaluate these integrals numerically,
divide the aperture radius w into N equal elements, and
let ξ – x = nw / N, x = mw / N. Hence, dv = kw / N,
v = nkw /N, and therefore

where
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Fig. 2. Notation used for circular apertures.
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(8b)



(8d)

all quantities being evaluated at the mid-points of the
summation elements. The ranges of summation in Eqs.
(8a) are 1 ≤ n ≤ m + N if n ≤ m and m – N < n ≤ m + N.
The number N of summation elements used in these
expressions must be large enough to ensure that the
oscillations of eiβ in Eqs. (7d,e) are accurately sampled.
According to Eq. (7a) and the quarter-wave criterion
this will be achieved if the pathlength difference ΔPQ
between successive summation elements is less than
λ /4, or Δβ ≤ π /2. Differentiating Eq. (7a) with respect
to v gives

(8e)

which can now be used as follows to estimate the
required value of N. In the immediate vicinity of the
screen (z → 0 we have β ~ v, so that N > 2w /λ = 100
when w = 50λ . In the Fresnel limit (z >> λ ) one finds
N > 2 vmaxw /πz where vmax is the largest value of v used
in the computations, and therefore N > 6w2 /λz = 150
when w = 50λ , z = 100λ and the farthest point of
observation is located one aperture halfwidth beyond
the shadow boundary (vmax = 1.5 kw). It should be noted
that the corresponding values of N can be much larger for
wider apertures.

3.3.2.2 Numerical Examples
1. Forward and Reverse Axial Irradiances. Equations
(7f,g) can be solved in closed form for the special case
of axial points of observation, where x = 0, χ = 0 and

(9a)

Hence one finds, using Eqs. (7e) and (6e),

(9b)

which can now be substituted into Eqs. (6i, j) and then
leads to the following expressions for the forward and
reverse irradiances along the z-axis of Fig. 2,

(9c)

These results are valid for arbitrary values of z and
are plotted in Fig. 3, where the upper curve represents
the forward axial irradiance E(0, z) computed from the
first Eq. (9c) for w = 5λ and the lower curve represents
the corresponding reverse irradiance Ê (0, z). Both
quantities are continuously differentiable on crossing
the aperture plane, the forward irradiance (a) being
equal to the geometrical irradiance Egeom in the negative
Fresnel limit – z >>λ , oscillating rapidly in the vicinity
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Fig. 3. Forward and reverse axial irradiances, (a) EK and (b) ÊK, on
opposite sides of a circular aperture of radius w = 5 λ.
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of the aperture, and tapering off beyond it. The reverse
axial irradiance (b) is seemingly diverging from a vir-
tual source point beyond z = – 10λ, exhibits no oscilla-
tions, and its magnitude is equal to the lower envelope
of the forward irradiance curve.

2. Near-Field Diffraction Patterns. The applica-
tion of Eqs. (8a-c) for the computation of diffraction
patterns is straightforward, and in this work standard
spreadsheet software was used to obtain numerical
results. As an example, Fig. 4 shows the near-field
irradiance profiles (6i) on the opposite sides (z = ±λ) of 

the previously considered circular aperture of radius
w = 5λ. The resemblance of the central portions of these
curves is remarkable and is attributable to the basic
premise adopted in Sec. 3.2, where St. Venant’s hypoth-
esis was replaced with the assumption that diffraction is
a continuous field phenomenon that occurs on both sides
of the screen. The corresponding reverse profiles defined
by Eq. (6 j) are shown in Fig. 5, illustrating the onset of
a reverse flow of energy on the positive side of the screen
(z = λ) as well as the fact that the reflected diffraction
pattern on the negative side (z = –λ) is simply a mirror
image of the transmitted pattern in Fig. 4.
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Fig. 4. Forward irradiance profiles EK at distances z = ± λ from a circular aperture of radius w = 5 λ.

Fig. 5. Reverse irradiance profiles  ÊK at distances z = ± λ from a circular aperture of radius w = 5 λ .



3. Aperture Field and Transmission Coefficients. For
radiometric applications it is important to know the
transmission coefficient of an aperture, defined as
τ = Φtotal / Φgeom where Φtotal is the total radiant flux trans-
mitted into the half space z > 0 and Φgeom is the geo-
metrical flux incident upon it in the absence of
diffraction. Thus, for a circular aperture as discussed in
this Section,

(10a)

where A = πw2 is the aperture area, dQ = 2πxdx is the
circular area element, and uK (m, z) is given by
Eq. (8a). The practical use of Eq. (10a) is tedious
because it requires consecutive numerical integrations
and also poses computational problems arising from the
singularities of uK (x, z) in the limit z → 0. The most
troublesome singularities, due to the terms in 1 /β 2 and 
1 /β 3 in Eq. (7f), can be avoided altogether by invoking
the second Eq. (5e) so that

(10b)

Trial computations indicated that values of zmin as small
as 0.0003λ could be used without difficulty and that
the limiting value of τ defined by Eq. (10a) was
reached at the 0.1 % level for zmin < 0.0003 λ.
Accordingly, the numerical result presented in the
following were computed for zmin = 0.001λ. As expect-
ed, the aperture irradiance distributions |uK (x, 0)|2
obtained from Eq. (10b) were similar to an average of
the two curves in Fig. 5. They were everywhere finite
and continuous and bore no similarity to the aperture
distributions presumed by Rayleigh and Bouwkamp
[6,10], Levine and Schwinger [11] or Wolf and
Marchand [15].

Figure 6 shows the dependence of the transmission
coefficient (10a) on aperture size for the range
0 < kw < 3π, and here it is seen that τ exhibits a damped
oscillatory behavior and quickly approaches the limit,
τ → 1 as kw → ∞. It was estimated that this limit is
reached within less than 1 % when w = 5λ.

3.3.3 Apertures Bounded by Straight Edges
3.3.3.1 Algorithms

Consider a plane aperture of width (l + r), bounded
by parallel straight edges as indicated in Fig. 7. The
corresponding diffraction pattern will consist of
straight bands which are parallel to the edges, and thus
it will again be sufficient to compute its variation along
the x-axis. For a given point of observation P = (x, 0, z)
and arbitrary aperture points Q = (ξ , η , 0), Eqs. (5a,b)
can now be expressed as follows [12],

where z > 0, H0
(n) = Jn + iYn denotes a Hankel function,

Jn and Yn are Bessel functions, and v as well as β are the
same as in Eq. (7a). It follows at once that the forward
and reverse wave functions defined in Sec. 3.2 are
given by
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(11b)

(11c)

To evaluate these expressions by numerical integra-
tion define, in analogy to the definitions that precede
Eqs. (8a), l+r = 2w, Δv = kw /N, L = 2kl /Δv, R = 2kr /Δv,
v = nΔv, kx = mΔv . Therefore,

(12a)

(12b)

the choice of N is governed by the same considerations
as in Sec. 3.3.2.1. As βn is independent of m it follows
at once that, if uK (m, z) and ûK(m, z) are known and m
is replaced by m ± 1, the new values will be
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Fig. 7. Notation used for slits.
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which illustrates in a very instructive manner how the
diffraction pattern changes when the point of observa-
tion is moved so that new portions of the wavefront are
covered and uncovered by the aperture edges. The
recursion formulae (12c,d) are convenient for practical
applications as they allow the computation of succes-
sive values without performing the summations of
Eqs. (12a,b) for every point of observation.

The results obtained for the diffraction profiles of
slits are similar to those presented in Sec. 3.3.2.2 for
circular apertures. They were included in Ref. [12] and
are omitted here.

3.4 Half-Plane Results and Comparison With
Sommerfeld’s Theory

The aperture depicted in Fig. 7 is reduced to an in-
finitesimally thin half plane defined by x > 0, z = 0, by
letting L = – ∞, R = 0. Accordingly, Eqs. (12a-d) are
now replaced by

(13a)

(13b)

where it should be noted that the last terms on the right-
hand sides of Eqs. (12c,d) are now absent because
there is no right aperture edge. Here, as above, kx = mΔv,
k (ξ – x) = nΔv, S (βn) and S^(βn), being the same as in

tion elements Δv must again satisfy the quarter-wave
criterion, so that the phase difference between succes-
sive summation elements, Δβ = βn + 1 – βn , must not
exceed π /2. This phase difference has a maximum
value, (Δβ )max = Δv when z = 0, and hence it follows
that the quarter-wave condition will always be satisfied
when Δv < π /2. As the choice of Δv also determines
the step size of the recursions (13a,b) the value chosen
in this work was Δv = π /5 , yielding equidistant values

of uK (x, z) and ûK(x, z) spaced by Δx = π /5k = 0.1λ .
The starting values, uK (0, z) = 0.5 and ûK(0, z) = 0,
were obtained by performing the summations in
Eqs. (13a,b) for m = 0.

The corresponding expressions according to
Sommerfeld’s rigorous theory [7, 9, 12] for the border
case of a normally incident geometric field are

(14a)

(14b)

(14c)

(14d)

where uS
(p, s) (x, z) satisfy the wave equation and the re-

uS and ûS are the forward and reverse wave functions,
V (ρ) is the complex Fresnel integral the form used by
Sommerfeld,6 while C(ρ) and S(ρ) are the standard
Fresnel cosine and sine integrals.

During the course of this work, the above sets of
equations were used for numerous computations
intended to quantify the residual differences between
them. The results obtained showed consistently that
these differences were insignificant even in the imme-
diate vicinity of the diffracting edge. As an example,
Fig. 8 shows the respective forward irradiance distribu-
tions, | u K |2 and | u S |2 , at the distances z = ± λ from the
half plane. The similarity of the curves is unmistakable,
and further computations showed that the same quanti-
ties differ by less than ± 0.01 for z = ± 10λ . This
demonstrates the rigor of the equations derived in
Sec. 3.2 for the specific case of half-plane diffraction,
and it may be inferred that the corresponding expressions
for circular apertures and slits are equally as rigorous.
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4. A Note on Electromagnetic Diffraction
Theories

The thoughts presented in this paper arose from a
realization that, at some time in the mid 1900’s, the
theory of diffraction had reached an impasse. Although
it should have been obvious that the inability to account
for polarization phenomena is an intrinsic feature of the
scalar theory of light, and although there was no exper-
imental evidence that this is a practical problem in the
context of Fresnel’s theory,7 attempts were made to
modify the theory so that, in a manner of speaking,
polarization is introduced through the back door and
the scalar theory assumes a pseudo-vectorial character.
These modifications were justified as follows [e.g., 10,
16].

For infinite plane screens and plane-parallel incident
light, the Helmholtz integral theorem [5] has two mutu-
ally independent solutions, u(p) and u(s), which include
but are not limited to the Rayleigh-Sommerfeld

and Sommerfeld solutions

Sec. 3 and obey the same boundary conditions as those
pertaining to the reflection of polarized light at a perfect-
ly conducting metallic reflector. Hence it is surmised,
without further proof, that these solutions can be regarded 
as the components of mutually independent electromag-

the wave impedance of free space.
It is easy to show that these assumptions are fallacious

and can lead to contradictory or dubious results. For
example:

According to  the above, unpolarized light incident
on a diffracting screen is transmitted as partially polar-
ized light having a polarization ratio given by
Π = | u (p) | 2/ | u (s) |2 and ordinarily this ratio would not
be unity in the near zone. However, in the mid zone
u(p) and u(s) are expected to be same so that Π = 1.
This is absurd, because the polarization of light can-
not change while propagating in free space.

The curl operators in Maxwell’s equations are known
to introduce singularities into the “electromagnetic”
theory, even when the underlying wave functions u(p)

and u(s) are everywhere finite and continuous. These
singularities have been interpreted as evanescent
edge waves emitted by the diffracting edge, as origi-
nally presumed by Thomas Young but soon refuted
by Fresnel.8 The notion of edge waves has persisted
as a means to explain singularities encountered in
diffraction calculations [18], whereas a thorough
analysis might have revealed that these singularities
are artifacts of mathematical errors or illogical
assumptions.

The reason for inconsistencies of this kind is that
the conditions u (p) = 0 and ∂u (s) /∂z = 0 are necessary
and sufficient to satisfy Helmholtz’ theorem, but in-
sufficient to transform the scalar theory of light into a
viable tool for explaining electromagnetic phenomena.
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Fig. 8. Forward irradiance profiles E K at distances
z = ±λ from a half plane according to Eqs. (13a) (-----)
and (14b) (——).

7 This may be due to the paraxial approximations made in Fresnel’s
theory. The existence of polarization effects at large angles is, of
course, evidenced by the properties of diffraction gratings.

8 It appears that Young did not publish this hypothesis and that
Fresnel was the first to mention it.
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